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Abstract - -This  study describes the transition between the quasi-static and the viscous regimes of  shearing 
of thin layers of  spheres in a viscous fluid at high solid loadings. Experiments were conducted in a 
Couette-type shear cell in two complementary modes: (a) constant  particle normal stress, variable solid 
fraction and (b) constant  solid fraction, variable particle normal stress. During steady shearing under the 
constraint of  constant  solid fraction, transition from a strain rate independent stress to one with a linearly 
dependent behavior was found to occur with a local min imum in the stresses with respect to strain rate; 
correspondingly, the solid fraction assumed a max imum with respect to strain rate under conditions of  
constant  normal  stress. These are the first observations of  such a phenomenon,  which we call viscous 
compaction. At sufficiently high strain rates, the mixture exhibited a linear Newtonian-like scaling between 
strain rate and both shear and normal  stresses. These measurements  of  normal stress are the first since 
those of  Bagnold. 
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1. I N T R O D U C T I O N  

Dense suspensions of solid particles in Newtonian fluids are frequently encountered in natural and 
industrial flows. In the case of  flows such as avalanches and landslides, the granular material may 
fail dramatically, causing a flow to occur with catastrophic consequences. In the processing of 
ceramics and in powder metallurgy, for instance, materials in the finely divided state have to be 
handled at the maximum possible solid fraction; simultaneously, it is essential that these slurries 
have good mobility which is difficult to attain. Consequently, it is important to understand the 
physical phenomena peculiar to these mixtures in order to better predict their flows. 

Suspension flows may be broadly classified as belonging to one of three regimes: quasi-static, 
viscous or inertial. Reynolds (1885) showed that a saturated non-Brownian suspension in a random 
close packed (RCP) configuration must dilate under shear to sustain continued deformation. This 
phenomenon is called Reynolds dilatation. At extremely low strain rates and under the application 
of  a normal force, strain rate independent stresses are set up in the medium (Bridgewater 1972; 
Buggisch & Stadler 1986). This is the quasi-static regime and it is dominated by short-range 
frictional interactions between the particles resulting from extended contact. Consequently, models 
based on Coulomb interactions have been successfully applied to describe the slow flow of  grain 
in hoppers (Brennen & Pearce 1978; Nguyen et  al. 1979) and the mechanics of soils (Scott 1963; 
Schofield & Wroth 1968). 

As the strain rate is increased, it is to be expected that the interstitial fluid will play an increasingly 
important role and at sufficiently high strain rates, fluid viscosity will govern the behavior of the 
mixture. This regime was first studied systematically by Bagnold (1954) who showed that both the 
shear and normal stress (r and a respectively) scale linearly with ~3/2].,/]) where 2 is the ratio of 
particle diameter to mean (surface-to-surface) spacing between neighbors, /~ is the fluid viscosity 
and ~) is the strain rate. This linear dependence of  ~ on p has prompted the appellation viscous 
regime. Later studies by Cheng & Richmond (1978), Gadala-Maria & Acrivos (1980), Thomas 
(1965), Rutgers (1962) and Pfitzold (1980), amongst others, have demonstrated the inaccuracy of 
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Bagnold's scaling for the shear stress; all of  the reliable experimental data show that ~ scales with 
2#'2 (Frankel & Acrivos 1967). However, no measurements of normal stress exist other than those 
of Bagnold. In fact, several theoretical studies (Leighton & Acrivos 1987; Brady & Bossis 1985) 
have suggested that a normal stress cannot be generated in Newtonian suspensions in the absence 
of particle contact. In addition, the investigation of Cheng & Richmond (1978) has been the only 
one since that of Bagnold to examine the behavior of suspensions very close to maximum packing. 
One of their unexpected discoveries was that in the case of 'coarse materials', the shear stress is 
a decreasing function of strain rate, a phenomenon that they attributed to changes in the packing 
density. 

At still higher values of strain rate, the flow enters the inertial regime which is dominated by 
collisional interactions between the particles resulting in momentum exchange in a manner akin 
to the molecules of a dilute gas. This regime was first discovered by Bagnold (1954) who showed 
that the generated normal and shear stresses scale with ,~o)~2. This has since been confirmed 
experimentally (Savage & McKeown 1978; Savage & Sayed 1984; Hanes & Inman 1985), 
numerically (Campbell & Brennen 1985; Hopkins & Louge 1991) and kinetic theories have also 
been developed that are successful in predicting the qualitative behavior of these mixtures (Jenkins 
& Savage 1983). 

The transition from the viscous to the inertial regime was examined by Bagnold and manifests 
itself as a change from a linear scaling of stress with respect to strain rate to a quadratic one and 
is well understood. In contrast, the nature of the transition from the quasi-static to the viscous 
regime remains unclear despite its important implications in events associated with the loss or gain 
of shear strength of a granular assembly such as flow failures and pipe blockage. 

The present investigation addresses this transition and aims to understand the scaling of the 
stresses in the transitional and viscous regime. Of particular interest is the behavior of the normal 
stress in the viscous regime, if it exists. In all of the data presented, the size of the symbols is 
representative of the experimental error, unless otherwise indicated. 

2. A P P A R A T U S  

The experiments were conducted using a dynamic shear cell which provides the capability of 
conducting steady and transient shear experiments with solid-liquid mixtures at large volumetric 
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Figure 1. The dynamic shear cell: schematic view. 
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solid fractions, upto and including maximum packing configurations. The apparatus is described 
in detail by Poutiatine (1990) and by Prasad (1993). The arrangement is shown schematically in 
figure 1. The mixture is confined within the annular space between two coaxial vertical cylinders 
with nominal diameters of  0.219 and 0.435 m. Shearing takes place between a pair of  horizontal 
plates that span the annular gap. The bot tom plate rotates and the stresses are measured at the 
top plate, which is specially designed to measure the stresses generated in the particle matrix alone. 

Reynolds dilatation occurs when a compact  granular assembly is sheared from rest. If  the 
mixture is confined to a fixed volume with impervious walls (as is the case in conventional 
viscometers), the following situation arises: the particle matrix is prevented from undergoing 
dilatation, resulting in a generation of normal stress, which causes a decrease in the net volume 
of solids due to Hertzian interactions. Consequently, a partial vacuum may be generated in the 
fluid notwithstanding the presence of a compressive stress state in the solid phase. Thus a normal 
stress that is measured at the impermeable wall would be ambiguous as it can result from a 
combination of a compressive solid stress and a tensile fluid stress. The top plate of  the shear cell 
is therefore made porous; this allows the pore pressure to equilibrate across the wall and the stress 
that is measured results solely from the coupling of the particulate medium and the wall. 

Additionally, the seal between the wall and the top plate is of  a non-contact knife-edge type so 
that the entire top plate is free to rotate about the vertical axis and translate along it. The upper 
wall, made of acrylic, is rough; it is perforated with cylindrical 4 mm diameter holes 1.8 mm deep 
that cover 55% of the surface. It was observed that the particles tended to partially lie in and 
protrude from these holes. The bot tom rotating wall was covered with a thin layer of  silicon rubber 
in which 2 mm glass spheres were embedded at a mean spacing of 5 mm. Thus both surfaces were 
rough with a roughness scale of  the order of  the particle diameter. The particles used were 3.175 mm 
acrylic spheres and 2 mm glass spheres. Glycerol-water mixtures in varying concentrations were 
used as interstitial fluids. A thermostat coupled with an on-off  controller was used to control the 
flow of chilling water around the periphery of the shear cell to ensure that the mixture temperature 
and hence the fluid viscosity remained constant. 

The apparatus was designed so that the bot tom plate is capable of  both steady as well as 
oscillatory rotation. The test procedure began with a measured mass of  particles being placed in 
the shear cell. The interstitial fluid was then poured in and an oscillatory motion was imparted to 
the mixture via the bot tom plate until it became uniform. The top plate was then lowered onto 
the mixture. This procedure ensured consistency in the experimental runs. The maximum solid 
fraction achieved at rest did not differ from that observed during the shearing tests. 

Two kinds of  experiments were conducted. The first consisted of imposing a normal stress with 
weights or by means of partially levitating the top plate using a pneumatic actuator; in this mode 
the top plate was free to move vertically and the mixture was allowed to assume an equilibrium 
solid fraction which was measured. The shear stress was calculated by measuring the restraining 
torque necessary to hold the top plate in position. 

In the second type of experiment, the volume occupied by the solid phase was held fixed by 
locking the top plate axially. In this instance, both the normal and shear stresses were measured 
directly using a floating element of  rough wall (diameter 83 mm) connected to a two-dimensional 
force balance shown in figure 2. A more detailed description is given in a later section. 

In both types of  experiments, the total volume of particles in the shear cell was such that the 
length scale of  the region of  shear was approximately t0 particle diameters at the largest solid 
fractions. It is well known from studies using larger numbers of particle layers (Hanes & Inman 
1985; Thompson & Grest 1991) that the thickness of  the shear band is 1(~15 particle diameters and 
moreover,  that the strain rate is nearly uniform across this band. Thus, in the present experiments, 
shearing takes place over a length scale that is of  the order of  a typical shear band. It is therefore 
reasonable to expect that the strain rate is uniform. In addition, some limited visual observations 
through a viewport in the side of  the shear cell showed that there were no locked zones present. 

3. E X P E R I M E N T S  AT C O N S T A N T  N O R M A L  STRESS 

Experiments at constant normal stress were conducted using 2 mm glass spheres and a 
wate~glycerol  mixture with a viscosity of  35 z 10 3 kg m Is -~. The shear stress, r, and (volumetric) 
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Figure 2. Force balance used in the direct measurement of Figure 3. Dependence of ~ on ;; under conditions of 
the shear and normal stresses, constant a. 

solid f ract ion,  ~b, were measured  after  s teady state was a t ta ined  for each value o f  the no rma l  stress, 
or, and  strain rate,  "2. Long  t ime records  showed no slow var ia t ions .  The behav ior  was also found 
to be non-hyster i t ic  in s train rate. 

F igure  3 shows the behav ior  o f  z as a funct ion o f  a and  ",;. There  appears  to be little dependence  
on strain rate,  par t i cu la r ly  at larger a, This  is in agreement  with the da ta  o f  Bridgewater  and 
Buggisch & Stadler  as well as those o f  H u n g r  & Morgens te rn  (1984). A similar  strain rate 
independence  was observed in the s imula t ions  o f  T h o m p s o n  & Gres t  (1991). 

The measured  ~b under  condi t ions  o f  cons tan t  a, shown in figure 4, behaved in an unexpected 
manner .  As }; was increased from its lowest  value,  ~b was found to increase and then decrease ra ther  
than decrease mono ton ica l ly  as would  be the case for viscous (Bagnold)  d i la ta t ion  or  remain  
cons tant ,  as in quasi -s ta t ic  shearing.  Fu r the rmore ,  increasing a has the effect o f  shifting the solid 
fract ion curve upward .  Trad i t iona l ly ,  the m a x i m u m  packing  fract ion,  ~b m is defined for sheared 
g ranu la r  assemblies  as that  value o f  ~b above  which the medium canno t  be sheared and has been 
assumed to be a cons tan t  (F ranke l  & Acr ivos  1967). However ,  f rom figure 4, it is clear that  the 
peak  solid f rac t ion achieved at a given value o f  cr may  be regarded as a m a x i m u m  solid fract ion 
co r re spond ing  to that  or. Hence,  (~b m is not  a cons tan t  but  ra ther  a function o f  0. This var ia t ion  
o f  q~m with a has been demons t r a t ed  by O n o d a  & Liniger (1991) in the limit of  vanishing cr. In 
their  exper iments ,  the stress state of  the sheared medium was cont ro l led  by varying the degree of  
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Figure 4. ~b as a function of 9 with ~ held constant. 
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mismatch between the solid and liquid phases in the presence of gravity. They found a monotonic 
increase in ~b above 55 + 1% with a where the latter concentration is the so-called stress percolation 
limit below which a disappears. For mixtures at high solid loadings, the meaning of a maximum 
packing becomes ambiguous and for a monodisperse mixture, it has been shown to assume a value 
anywhere between the above stress percolation limit and the random close pack limit of  63 + 1% 
(Scott 1960; Finney 1970; Savage & McKeown 1983). 

The relative viscosity, Pr = z/(/a~) is plotted against ~b in figure 5. tr is held constant along each 
curve. For  comparison, the theoretical curve of Frankel & Acrivos, which is known to agree with 
numerous experimental measurements of  dense suspensions, is also plotted; it is given by 

[ 1 1 ~r = c (~m/4 , ) , ,3_  l 

where C is a constant. In the present case the value of (~m used was 0.63. Figure 5 shows that the 
measured values of  #r tend toward the Frankel-Acrivos curve with increasing strain rate. 

One puzzling observation during these experiments was that the system underwent large 
oscillations at low values of  ~. These oscillations were violent enough to cause breakage of the 
particles and disappeared when the strain rate was increased. Similar behavior has been reported 
in the past by other investigators (Cheng & Richmond 1978; Savage & McKeown 1978). It turns 
out that these oscillations have an interesting fundamental explanation which is the subject of  
another paper (Prasad & Kyt6maa  1995). 

The above experiments identify a phenomenon of compaction which arises as the mixture is 
sheared sufficiently fast at constant normal stress. It is believed to reflect the onset of  viscous effects 
and for this reason, the phenomenon may be called viscous compaction. 

4. E X P E R I M E N T S  AT C O N S T A N T  S O L I D  F R A C T I O N  

4.1. Experimental details 

With a view to eliminating the unsteady oscillations observed in the constant normal stress study, 
further experiments were conducted in a true strain rate controlled configuration. To this end, the 
top plate assembly was stiffened and locked axially along the main shaft. 

The stresses were measured directly by means of a circular floating element of  wall that was cut 
out of the top plate and connected to a two-dimensional force balance. The narrow gap between 
the floating element and the rest of wall was restricted to a size of 1 mm to prevent particles from 
jamming into the gap. The force balance consists of  three aluminum blocks, cantilevered together 
in mutually perpendicular directions using spring steel strips as stiffness elements and the deflections 
are measured by means of strain gages (see figure 2). The assembly was done with great care to 
ensure that the shear and normal deformations were truly independent. 

In this series of  experiments, the aim was to observe the behavior of  the system over a wide range 
of normal stress. Hence, it was imperative that the density mismatch between the interstitial fluid 
and the particles be minimal in order to reduce the variation of a across the height of  the bed. 
The particles used were 3.175 mm acrylic spheres with a size distribution shown in figure 6. The 
interstitial fluid used was an aqueous solution of glycerol with a viscosity of  70 × 10 -3 kg m ~s -~. 
The mixture was subjected to steady shearing and the shear stress, normal stress and driving rpm 
signals were input to a data acquisition system and averaged. In these experiments, the Reynolds 
number based on the particle diameter and the mean speed of the moving wall ranged from unity 
to about  35 while the Bagnold number was calculated to lie between 0.25 and 12. The small values 
of  both parameters reflect the extreme slowness of  the shearing. 

4.2. Stress-strain rate scaling 

It was shown earlier that under conditions of constant or, ~b assumes a maximum at a critical 
strain rate ~ and that an increase in a shifts the curve upward in q~. As shown in figure 4, the 
experiments were conducted at three values of  a. Based on these data, it is to be expected that the 
dependence of ~b on a and ~ will appear as shown schematically in figure 7(a). I f  a horizontal line 
is drawn across this plot, representing a test carried out at constant q~, it will first encounter lines 
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Figure  6. Size d i s t r ibu t ion  of  the acrylic spheres used in the cons tan t  solid fract ion experiments .  

of  decreasing ~r; after a minimum value of  a is reached, the trend is reversed and lines o f  increasing 
cr are encountered.  At constant  4), the normal  stress a is therefore expected to possess a minimum 
with respect to strain rate as shown in figure 7(b). 

The measured a and r are plotted in figure 8(a) and (b) as functions of  °~ with q5 as a parameter.  
While the experiments were conducted over a wide range of  4), only a few representative values 
are shown to clarify the behavior  o f  the suspension. These measurements are the first since those 
o f  Bagnold to directly measure the normal  stress in a sheared suspension. Moreover ,  as discussed 
earlier, they are the only unambiguous  measurements  of  a in the dispersed phase since the stresses 
in the fluid phase are permitted to equilibrate. 

For  low values o f  ~b, both r and ~r exhibit a monoton ic  increase with );. With increasing qS, 
evidence o f  quasi-static behavior is apparent;  both stresses exhibit weak strain rate dependence at 
low strain rates. At  higher ?~, the suspension recovers its linear dependence on ~. At still higher 
values o f  q~, a exhibits a local minimum with ?~, as anticipated; correspondingly,  z also exhibits a 
local minimum at the same value of  3 ;. The most  interesting feature is the reduction in the stresses 
with increasing 3;. A possible mechanism for this is as follows. The interstitial fluid is squeezed due 
to relative mot ion between the particles and as 3; increases, lubrication interactions assume an 
increasing importance.  Once lubrication between the particles becomes increasingly important ,  it 
may  be expected that the shear and normal  forces will be significantly reduced compared  with the 
forces o f  solid-solid interaction. This reduction in r and cr would continue until lubrication is the 
dominan t  interaction. Further  increase in ?~ would then cause an increase in r and ~ which would 
ultimately scale linearly with ?; at high strain rates. The present observations are in qualitative 
agreement with the results of  Cheng & Richmond described earlier in this paper where the authors 
report  a decreasing r--,) relationship; however, their measurements were limited to one value of  ~b 
which was not recorded and a limited range of  3; so that the local minimum in shear stress was 
not observed. 
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Figure  7. (a) Schemat ic  representa t ion  of  q~ as a funct ion o f , / a t  cons tan t  a :  (b) expected behav ior  of  a 
as a funct ion of  ); at cons tan t  ~b. 
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Figure 8. (a) Normal stress and (b) shear stress as functions of  ~ at constant q~. 

The presence of a local minimum in the ~-~ relationship has important implications on the 
stability of  conventional rheometric systems which are generally used in shear stress measurements 
of suspensions and do not incorporate a floating element of  wall, unlike the present device. When 
T is a decreasing function of~, it may be shown (Prasad & Kyt6maa 1995) that the system is linearly 
unstable; a full non-linear analysis indicates that it will undergo a large scale limit cycle behavior 
with sudden accelerations and decelerations. It is believed that this instability was responsible for 
the large scale oscillations observed during the constant normal stress experiments. 

4.3. Relative viscosity 

The relative viscosity, p~ is plotted in figure 9 as a function of ~ and ~. At low strain rates and 
high solid fractions, the curves have a slope near - 1 ,  indicating a constant shear stress. At 
q~ = 0.491, p~ is constant with strain rate, reflecting the linear shear stress scaling with strain rate. 
At high ~b, the curves appear to asymptote to a constant value although they do not quite flatten. 

The maximum strain values of  ]Ar are plotted against 4~ in figure 10. The theoretical curve of 
Frankel & Acrivos is also plotted for comparison. The value of the maximum packing fraction 
required in the Frankel-Acrivos expression was determined using the procedure suggested by 
Thomas which consists of plotting [/~ - 1]-i and extrapolating to zero ordinate; the value obtained 
was 0.562. From figure 10, it is clear that the present data are in qualitative agreement with earlier 
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results despite the fact that  the present  measurements  have not reached their high ~) asymptot ic  
values. 

4.4. Shear-normal stress ratio 

The ratio r / a  is an indicator  o f  the nature  of  the interactions between the particles. At very low 
solid fractions,  one might  expect that  par t ic le-par t ic le  interaction is minimal  so that  no normal  
stress is generated,  yielding ~/a --~ Qc. Conversely,  at large ~b and low f, particle friction would be 
the dominan t  interact ion and r / a  can be expected to approach  the coefficient o f  dynamic  Cou lomb  
friction. 

Figure 11 shows the ratio r / a  as a function of  ¢ and qS. Despite  the scatter in the data,  a 
weak dependence on ;0 is suggested. In addition, the curves appear  to asympto te  to a constant  r / a .  
The values of  ~/~ at the m a x i m u m  f are plot ted as a function of  ~b in figure 12. An exponential  
falloff with ~b seems evident. Tha t  r / a  should increase with increasing dilution is intuitively 
correct  since ~r much  vanish as ~b ---, 0. In contrast ,  Bagnold found that  r/or remained constant  in 
the viscous regime at 0.75; however,  his tests were conducted at only one value of  ~b. It must  be 
emphasized that  the curves in figure 11 have not  yet reached their asymptot ic  values at the 
m a x i m u m  strain rate so that  the dependence of  r/or on q5 in figure 12 could very possibly flatten 
out  at large qS. 

4.5. Influence of fluid viscosity 

In order  to investigate the dependence of  the transit ion on interstitial fluid viscosity, addit ional 
experiments  were conducted using a fluid with a viscosity one order of  magni tude  lower than that  
used in the earlier tests. A glycerol water  mixture of  viscosity 55 x 10 4 kg m Us t was used. Due 
to the severe mismatch  of  density between the two phases, the experiments  were carried out only 
at very high solid fractions. 

Figure 13(a) and (b) shows the shear and normal  stress scaling in compar i son  with the earlier 
data.  Since lubricat ion forces scale with fluid viscosity, it is to be expected that  quasi-static behavior  
should be exhibited more  persistently than in the earlier experiments.  This is indeed the case; in 
figure 13(a) and (b), the q5 =0 .554  curves for r and a are still falling at low }" when 
y = 5 5 x  10 4 k g m  ~s ~ whereas the corresponding curves with / ~ = 7 0 x  10 3 k g m  ~s ~ have 
already started increasing at the same ;~. Addit ionally,  at low f, the stresses are the same for both 
sets o f  experiments,  indicating a weak dependence on #, which might be expected in a C o u l o m b  
friction domina ted  regime. 

However ,  figure 13(a) and (b) shows that  the ¢ at which the min imum in the stress curves occurs 
is not  influenced by # to any significant extent. This is somewhat  counterintui t ive since one would 
expect this pa ramete r  to be dependent  on # if the transit ion is a lubricat ion phenomenon .  At 
present,  the reason for this is not clear. 
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4.6. Maximum packing fraction 

This parameter  is often defined as that solid fraction at which the mixture cannot be sheared; 
it is a function of the internal microstructure. Consequently, changes in the microstructure are 
manifested as variations in the maximum packing fraction. The minimum normal stress is plotted 
as a function of solid fraction in figure 14. This can also be interpreted as the maximum packing 
achieved at the corresponding imposed normal stress. In figure 14, data were used only from r -~  
curves that had a definite minimum. The extreme sensitivity of  (J~m to  normal stress is apparent as 
might be expected from the normal stress curves in figure 8(a). The present data complement those 
of  Onoda & Liniger whose experiments were conducted in the limit of  a --+ 0. Here, the large tr 
limit is investigated. 

The curve in figure 14 appears to asymptote to 4~ ~0.565.  It is speculated that higher 
solid fractions may be achieved at large a through phase transitions which would be manifested 
as discontinuous jumps in 4~. Further, (Din appears to fall off exponentially as tr is decreased 
from large values and this is consistent with the relationship between r / a  and ~b shown in 
figure 12. 
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Figure 14. The min imum normal  stress achieved during constant  ~b experiments as a function of  q~ and 
fluid viscosity. 
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5. C O N C L U S I O N  

Experiments were conducted to study the transition between the quasi-static (solid friction 
dominated) and the viscous regimes of a shear flow of solid non-Brownian spheres in a viscous 
fluid, where the volume fraction of the particulates was high. The two most important features of 
the apparatus were: (a) a porous boundary that permitted liquid pressures to equilibrate and (b) 
a floating element of  wall that was capable of  measuring both shear and normal stresses. Under 
conditions of  constant solid fraction, the transition from a strain rate independent stress to a 
linearly dependent one was found to occur with a local minimum in the stresses. The first direct 
measurements of  the normal stress since 1954 demonstrate conclusively its existence even in the 
"viscous" regime where stresses scale linearly with strain rate. 

Complementary experiments carried out at constant normal stress revealed a gradual increase 
in the solid fraction with strain rate, called viscous compaction, followed by dilatation. This leads 
to a maximum packing fraction that is not a constant as has been traditionally assumed but a 
function of the imposed normal stress. The initial compaction is believed to be a macroscopic 
manifestation of a transition in the internal microstructure due to the onset of  viscous effects. 
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